Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8WPM_1)}(2) \setminus P_{f(5UJQ_1)}(2)|=285\),
\(|P_{f(5UJQ_1)}(2) \setminus P_{f(8WPM_1)}(2)|=4\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11101111101000101100001100100001001111001001000001000111110001000110011000001010100101110011010100001011011100100010111111000111110111000100000101101100100100000101111111100000011011100010110101110000100100000010000101010001101111110000111011010101001011010100000011000011100111010000010111000000011000111000101001011100000011000000011001111010100001000011011011111111010011110001101100111011101100101111101001100000000111110010011111111111001001100110011000000101110010110111011100010011000010110101110111111011001011110000011111010110110011011111111110101110010001000000000111100000000100111001111101101101111100100100100111111110001111111001111110001011100000010110101110010000011111011101001001100100110000001010000010010010000000000110011000100100010000010100100100010010001001111000001110100
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{826
}{\log_{20}
826}-\frac{29}{\log_{20}29})=232.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8WPM_1
5UJQ_1
298
153.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]