Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6KGM_1)}(2) \setminus P_{f(6MMP_1)}(2)|=39\),
\(|P_{f(6MMP_1)}(2) \setminus P_{f(6KGM_1)}(2)|=83\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:111100101101111000110001000011011011011000001111100001011100101010101010010110000011100100010001110111000101110000101111101101111100100111010110100011101101001001101111110111101111100010101101000011001010111000001100010011010001000101011000110110110111010000100001001001100000100110011010001001000000100101100101011100000010110000001100010100010010101100101000000110101101011010110010100100000101010010100100011111101101010011001000101001111000000001100001110011111100011110111111010001100111101001110100111010101110110001001011111010011111111110111110010001111001111011110011101000110010101110100001111001000011101101110111110111011111000100011010111101100110110011111
Pair
\(Z_2\)
Length of longest common subsequence
6KGM_1,6MMP_1
122
4
6KGM_1,3PDC_1
167
4
6MMP_1,3PDC_1
193
4
Newick tree
[
3PDC_1:98.06,
[
6KGM_1:61,6MMP_1:61
]:37.06
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1507
}{\log_{20}
1507}-\frac{669}{\log_{20}669})=210.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6KGM_1
6MMP_1
269
236
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]