Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2RIQ_1)}(2) \setminus P_{f(1YME_1)}(2)|=49\),
\(|P_{f(1YME_1)}(2) \setminus P_{f(2RIQ_1)}(2)|=131\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1100110000000000000100110100011101000100100000100111100001101001110011011111111100000101110001000010101100011000010000110100100100100101000001111000101110000000
Pair
\(Z_2\)
Length of longest common subsequence
2RIQ_1,1YME_1
180
4
2RIQ_1,2KDW_1
154
4
1YME_1,2KDW_1
192
4
Newick tree
[
1YME_1:97.81,
[
2RIQ_1:77,2KDW_1:77
]:20.81
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{469
}{\log_{20}
469}-\frac{160}{\log_{20}160})=91.1\)
Status
Protein1
Protein2
d
d1/2
Query variables
2RIQ_1
1YME_1
117
87
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]