Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6IVR_1)}(2) \setminus P_{f(1AJL_1)}(2)|=175\),
\(|P_{f(1AJL_1)}(2) \setminus P_{f(6IVR_1)}(2)|=5\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:001111010001110110101011001110111011101111100010001110101111011111111111100010000110100111011110001100100111100010001100111101010001000010101001110001001110011000111111001101001101001001110001001101111000110011111001110001011001111111101001011101110001101001100100111011001110110001000110101001110
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{309
}{\log_{20}
309}-\frac{12}{\log_{20}12})=99.9\)
Status
Protein1
Protein2
d
d1/2
Query variables
6IVR_1
1AJL_1
128
66.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]