Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5WVD_1)}(2) \setminus P_{f(2DRU_1)}(2)|=129\),
\(|P_{f(2DRU_1)}(2) \setminus P_{f(5WVD_1)}(2)|=65\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1111000011101001001000111011010101110100100011011000110000011001001000010001101101100000101110010110111010000010000100110011111011000111000101001100010010110100101101101000001100101001010100111011011000101000000110111110111010111110011001100101001000011001001000110001101000100110011100100010110110011101011001
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{490
}{\log_{20}
490}-\frac{180}{\log_{20}180})=90.5\)
Status
Protein1
Protein2
d
d1/2
Query variables
5WVD_1
2DRU_1
115
91
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]