Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6IJD_1)}(2) \setminus P_{f(2EJN_1)}(2)|=137\),
\(|P_{f(2EJN_1)}(2) \setminus P_{f(6IJD_1)}(2)|=39\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100000001011111110010111010100011101101011101000001011001001001001111110010110110010011101110110110010011101100011001101111001101110011011010010111101001011110000011001001000001111001001010110010001100001101111111011100110001111010111000100001101111001010100011111110000101111100110010000001000111111000100011110111100111000111001001111011011111111111110100110001110010111011000001100001101110010001100101101000110110011000001001110101
Pair
\(Z_2\)
Length of longest common subsequence
6IJD_1,2EJN_1
176
4
6IJD_1,7TIW_1
183
4
2EJN_1,7TIW_1
181
3
Newick tree
[
7TIW_1:91.98,
[
6IJD_1:88,2EJN_1:88
]:3.98
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{588
}{\log_{20}
588}-\frac{153}{\log_{20}153})=125.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6IJD_1
2EJN_1
160
106
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]