Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6UED_1)}(2) \setminus P_{f(9LSW_1)}(2)|=100\),
\(|P_{f(9LSW_1)}(2) \setminus P_{f(6UED_1)}(2)|=72\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100000000100010101001000110111011101010101110111010011110101110100000110001111110110101111011111010110101001100010111110101111101010101011101110011011111011100111100111011111101010001011101010011111101111100011100110111101100101110001001110001110110100011110010110001111011101010110001111111111010100011101101100010011000010110111010001101001001100100100011110001010001
Pair
\(Z_2\)
Length of longest common subsequence
6UED_1,9LSW_1
172
6
6UED_1,5DIS_1
177
4
9LSW_1,5DIS_1
201
4
Newick tree
[
5DIS_1:97.41,
[
6UED_1:86,9LSW_1:86
]:11.41
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{649
}{\log_{20}
649}-\frac{280}{\log_{20}280})=102.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6UED_1
9LSW_1
125
110
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]