Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6ICP_1)}(2) \setminus P_{f(8XYX_1)}(2)|=98\),
\(|P_{f(8XYX_1)}(2) \setminus P_{f(6ICP_1)}(2)|=82\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110000000000101010100111000000100110110010010010100111111011000111101100011100001000101011010100100100110000011001111010011100101001000000111110100010000110101100101011100101101010001001001001111011011010010111111001010101100010011110011110100000111110101000000010111010011000000011111000000000101110011110001110001100111001011100101000011001001000100110011101110000001
Pair
\(Z_2\)
Length of longest common subsequence
6ICP_1,8XYX_1
180
4
6ICP_1,4LGB_1
190
3
8XYX_1,4LGB_1
188
3
Newick tree
[
4LGB_1:95.95,
[
6ICP_1:90,8XYX_1:90
]:5.95
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{747
}{\log_{20}
747}-\frac{369}{\log_{20}369})=102.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6ICP_1
8XYX_1
132
131.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]