Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6QGB_1)}(2) \setminus P_{f(3MLH_1)}(2)|=135\),
\(|P_{f(3MLH_1)}(2) \setminus P_{f(6QGB_1)}(2)|=49\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10001000000111100111110001100011111111100110011001010111101101101111001111010111110000101111000110101001010101110101011101101001010110101111011011000110110011000110001011101111101010101100000010011011110101011000011100011001111000110000111111110011011101110000111111110101111100010010101100111100011011101110000100111011011011010110011100100101101011001111110011011000111011101101000001100111101000100100101101001110110110111100111011010101011011100101000010101100001111000110111001100111011001000001111111111110111111100001111000101101111110010110010110101101111100011010101100010101000101101111
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{831
}{\log_{20}
831}-\frac{235}{\log_{20}235})=164.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6QGB_1
3MLH_1
201
140.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]