Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6EZA_1)}(2) \setminus P_{f(7UIK_1)}(2)|=187\),
\(|P_{f(7UIK_1)}(2) \setminus P_{f(6EZA_1)}(2)|=5\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100000011111110110111011110011011000011010110000110011001011110001110000000001110110001001111101100011110101101000000111111110010010011001101000110001011101000101100100011111110100000010011000110111001011111011000010000010010010110011110111101011100110110011000100110000000000001001100010010101101100000100111111100000001010010
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{365
}{\log_{20}
365}-\frac{38}{\log_{20}38})=104.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6EZA_1
7UIK_1
134
72.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]