Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8BMS_1)}(2) \setminus P_{f(3FCQ_1)}(2)|=63\),
\(|P_{f(3FCQ_1)}(2) \setminus P_{f(8BMS_1)}(2)|=76\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100011010010100100101110010111001010111100101000100110111110010000101011011100110100011111001000111101000111110001110101101110111011110010001001011000011111111101011110000011010100011011001000001011010001001111001111001011001010011101011001110111100100110001111100100000110011010001
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{598
}{\log_{20}
598}-\frac{282}{\log_{20}282})=88.7\)
Status
Protein1
Protein2
d
d1/2
Query variables
8BMS_1
3FCQ_1
111
104.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]