Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6BRM_1)}(2) \setminus P_{f(3ZMS_1)}(2)|=29\),
\(|P_{f(3ZMS_1)}(2) \setminus P_{f(6BRM_1)}(2)|=149\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10100100101110011001110111100011011110101010011111111100111101111000000010011001110011100000001111000111010110000011011010000100100010101011011101011110000000101110011101010010010101111001011001011111100001001011101011100100100011001010010100110001111101001110110010100
Pair
\(Z_2\)
Length of longest common subsequence
6BRM_1,3ZMS_1
178
5
6BRM_1,8ALK_1
178
3
3ZMS_1,8ALK_1
140
5
Newick tree
[
6BRM_1:94.48,
[
3ZMS_1:70,8ALK_1:70
]:24.48
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1141
}{\log_{20}
1141}-\frac{269}{\log_{20}269})=232.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6BRM_1
3ZMS_1
290
187.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]