Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5ZEU_1)}(2) \setminus P_{f(1UBI_1)}(2)|=14\),
\(|P_{f(1UBI_1)}(2) \setminus P_{f(5ZEU_1)}(2)|=59\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0000010001111110001100001100011110111010011011010100011010101011100111011111110000000111110100011101101110111011101101010111011000100001010000111101110001111110011100011010011101010000100110010101100011011111111100000101101011110111000101100010011000100110111101101100010011110110110111011001100011111110110011001010011110011110101100011100000101111110110110111111010010101101110101110001101011011010010101111110110110000011100101110000000011010111011110101110110110101010111111111100110011001010100110110010110110101011110001110100100011110010011101011111100010111011000100101001000101111100010110001100101110101011101101011101110011110100101111111100111100000110101101101111010101110100111111110100110110111110111000001110110110011010011111101111101011111101110111100111010000110110001010010111011011101001110101110000000000011110001010010110011010100111010000100011111101011001011110011110001111111001101111100010101110110111101010111001100011010110101111110000100011100011010101011110100110111110100110000000101100010101011101101010110010010011000101001011110100111001110000101101110101100000100001010010011010100101101111100010111111001001111001100011111111101111101101001110010010100000010100011110000101010100101101100110101111110010110100101111011110111000000011110011000011000111001111000101100011000010111100111100100110110010111001101101001011011101010000011100001010101001000100101001011111001101101000111100110110001100000101111111100100111110111100110110011110111100101101111011001010011111101011001110010000000000
Pair
\(Z_2\)
Length of longest common subsequence
5ZEU_1,1UBI_1
73
2
5ZEU_1,4INS_1
34
2
1UBI_1,4INS_1
71
3
Newick tree
[
1UBI_1:40.39,
[
5ZEU_1:17,4INS_1:17
]:23.39
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1604
}{\log_{20}
1604}-\frac{76}{\log_{20}76})=406.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5ZEU_1
1UBI_1
274
156.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]