Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2EBH_1)}(2) \setminus P_{f(3FGR_1)}(2)|=180\),
\(|P_{f(3FGR_1)}(2) \setminus P_{f(2EBH_1)}(2)|=19\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11000000000110000101011011100100101111010011011101110101101010111011100000111010010000110000111001101101000001000010110010001001101101011000110110010111011100110011100000010110111000110111010111110110111001100101100100001011100010010001111111000000111000011000101100000110010100001111001011011011001010111001110001100110001011000111000100011011010100000111101000100010000111100000010111001001100110011100110011000100110100010010111101001010111001100100001010111000001111001000100010111011001000100111110001100011010111111001011101100011101110110001110100100101101101011110010101111000001111000100010001100101100010100110101100001010111010011101111101011000111010001000101011100111010010110001000111111001110110000110111001000101111111111001010011
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{948
}{\log_{20}
948}-\frac{202}{\log_{20}202})=204.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2EBH_1
3FGR_1
264
165.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]