Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5YXL_1)}(2) \setminus P_{f(3UEE_1)}(2)|=98\),
\(|P_{f(3UEE_1)}(2) \setminus P_{f(5YXL_1)}(2)|=54\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0101000011011100000001100100011000101000111100110001011101000111100100000111101011011110010110001101000110001000110000101110100011010100000111011111010000100001100100111011001001001001001101110100100100001011101010000101110011010
Pair
\(Z_2\)
Length of longest common subsequence
5YXL_1,3UEE_1
152
3
5YXL_1,8XBC_1
175
4
3UEE_1,8XBC_1
175
3
Newick tree
[
8XBC_1:91.01,
[
5YXL_1:76,3UEE_1:76
]:15.01
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{375
}{\log_{20}
375}-\frac{146}{\log_{20}146})=69.2\)
Status
Protein1
Protein2
d
d1/2
Query variables
5YXL_1
3UEE_1
88
71.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]