Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4IWM_1)}(2) \setminus P_{f(6IMH_1)}(2)|=137\),
\(|P_{f(6IMH_1)}(2) \setminus P_{f(4IWM_1)}(2)|=13\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101001101100111001110100111011001000100111110101011001000110111000111001100101110001011100011100100010100011001110100100101100011101111010100110100001000111100001000101111010110000100110010101010100000111001111110100000011110010011000101011010110000000
Pair
\(Z_2\)
Length of longest common subsequence
4IWM_1,6IMH_1
150
2
4IWM_1,6PRU_1
154
3
6IMH_1,6PRU_1
126
2
Newick tree
[
4IWM_1:79.87,
[
6IMH_1:63,6PRU_1:63
]:16.87
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{270
}{\log_{20}
270}-\frac{18}{\log_{20}18})=85.5\)
Status
Protein1
Protein2
d
d1/2
Query variables
4IWM_1
6IMH_1
104
56
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]