Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5XWZ_1)}(2) \setminus P_{f(5GYY_1)}(2)|=70\),
\(|P_{f(5GYY_1)}(2) \setminus P_{f(5XWZ_1)}(2)|=119\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0000001110010001100011010000010110111110111000110011011100110100101111000001110000010100110011011001110010111000110011110011100100111001101010010010010110100011110011010001101111010001000010110101001110110000010011101011111100111001111000011100111101101001011100110000001
Pair
\(Z_2\)
Length of longest common subsequence
5XWZ_1,5GYY_1
189
3
5XWZ_1,1QFW_1
172
4
5GYY_1,1QFW_1
211
3
Newick tree
[
5GYY_1:10.44,
[
5XWZ_1:86,1QFW_1:86
]:18.44
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{676
}{\log_{20}
676}-\frac{271}{\log_{20}271})=112.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5XWZ_1
5GYY_1
144
118.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]