Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4WLM_1)}(2) \setminus P_{f(2OMK_1)}(2)|=101\),
\(|P_{f(2OMK_1)}(2) \setminus P_{f(4WLM_1)}(2)|=63\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:010111111100011111001000111010101110011011010100110101100010001101110011111111000111001111000111110110001011010000001111011100111001101101010100000100110010011111111110010110000110100001000110111011111001111101011000110001101011001100001010110001101111001011011000100010011000100011010100010101001000011100
Pair
\(Z_2\)
Length of longest common subsequence
4WLM_1,2OMK_1
164
3
4WLM_1,6SCL_1
188
3
2OMK_1,6SCL_1
160
3
Newick tree
[
4WLM_1:90.77,
[
2OMK_1:80,6SCL_1:80
]:10.77
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{537
}{\log_{20}
537}-\frac{231}{\log_{20}231})=87.5\)
Status
Protein1
Protein2
d
d1/2
Query variables
4WLM_1
2OMK_1
110
96
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]