Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5WJH_1)}(2) \setminus P_{f(3DIQ_1)}(2)|=164\),
\(|P_{f(3DIQ_1)}(2) \setminus P_{f(5WJH_1)}(2)|=10\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110001111110100001100000000011010010110011010010101010110000000001010100011011000011100001111011000101000011111011100000000101111010111100001001110100011111111100010100001100101001110000000001000101101111100110011110000101001101011111101101100011010001100100101001111010111000001
Pair
\(Z_2\)
Length of longest common subsequence
5WJH_1,3DIQ_1
174
3
5WJH_1,7RTV_1
174
4
3DIQ_1,7RTV_1
252
3
Newick tree
[
7RTV_1:11.48,
[
5WJH_1:87,3DIQ_1:87
]:27.48
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{453
}{\log_{20}
453}-\frac{174}{\log_{20}174})=82.1\)
Status
Protein1
Protein2
d
d1/2
Query variables
5WJH_1
3DIQ_1
117
80.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]