Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5VSA_1)}(2) \setminus P_{f(6VTH_1)}(2)|=116\),
\(|P_{f(6VTH_1)}(2) \setminus P_{f(5VSA_1)}(2)|=64\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10111110001000011101100010110011000110100000010011001001101110011010111110010110011010110111101101010111011000100110111001001101010011110111001110001001101111100000111100001000011000011000110110111101100001001001100101111000110111110000000101100100001110000100101101010001011101010111000111100011000111011000100110
Pair
\(Z_2\)
Length of longest common subsequence
5VSA_1,6VTH_1
180
3
5VSA_1,1EQY_1
162
4
6VTH_1,1EQY_1
156
3
Newick tree
[
5VSA_1:88.01,
[
1EQY_1:78,6VTH_1:78
]:10.01
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{519
}{\log_{20}
519}-\frac{205}{\log_{20}205})=90.6\)
Status
Protein1
Protein2
d
d1/2
Query variables
5VSA_1
6VTH_1
116
96
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]