Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1NBZ_1)}(2) \setminus P_{f(2BEL_1)}(2)|=80\),
\(|P_{f(2BEL_1)}(2) \setminus P_{f(1NBZ_1)}(2)|=110\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0111000110101011001010001000100010100000000101110010001011100101010100101010010000111010000001100111100101001011101011110000100111011011001010010101010100000111001000000000001000101000000000000001000000011100100000
Pair
\(Z_2\)
Length of longest common subsequence
1NBZ_1,2BEL_1
190
3
1NBZ_1,1AZF_1
166
3
2BEL_1,1AZF_1
174
3
Newick tree
[
2BEL_1:93.62,
[
1NBZ_1:83,1AZF_1:83
]:10.62
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{497
}{\log_{20}
497}-\frac{214}{\log_{20}214})=81.8\)
Status
Protein1
Protein2
d
d1/2
Query variables
1NBZ_1
2BEL_1
105
93
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]