Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5UPF_1)}(2) \setminus P_{f(5SZL_1)}(2)|=77\),
\(|P_{f(5SZL_1)}(2) \setminus P_{f(5UPF_1)}(2)|=54\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1011101010111100000100000011000010001000000000001001000001101100110001010110000100100100001000110001100110000101110101110111110101110100001000110011001110010110110000000011100110001010110001001100110000011111010110101000111111100001000111100111100001011100000011001100100111011000001001000111001001110000011111010010110011011011100111000001001111010110101101001001101100011010011110111110010001100010000110011110110011101000000101010001110110100101010001001100110010100000100100010101010110000000000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{926
}{\log_{20}
926}-\frac{427}{\log_{20}427})=132.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5UPF_1
5SZL_1
163
150
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]