Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8ONJ_1)}(2) \setminus P_{f(2MMW_1)}(2)|=160\),
\(|P_{f(2MMW_1)}(2) \setminus P_{f(8ONJ_1)}(2)|=6\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1010100101011110010111001110011111001000000111101010010101010011111010011011001100110001111010110011000110000011110010010111000111101101000110000100110101000001100110010101101000011110010110110001101000011101100101010000111001101001110101001111101100111011110100010010100110110
Pair
\(Z_2\)
Length of longest common subsequence
8ONJ_1,2MMW_1
166
3
8ONJ_1,3ZVY_1
184
4
2MMW_1,3ZVY_1
76
2
Newick tree
[
8ONJ_1:98.76,
[
2MMW_1:38,3ZVY_1:38
]:60.76
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{298
}{\log_{20}
298}-\frac{21}{\log_{20}21})=92.5\)
Status
Protein1
Protein2
d
d1/2
Query variables
8ONJ_1
2MMW_1
115
61.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]