Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5SXR_1)}(2) \setminus P_{f(9JAK_1)}(2)|=178\),
\(|P_{f(9JAK_1)}(2) \setminus P_{f(5SXR_1)}(2)|=29\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10001001100111010000011100101011000001001110010010110010111100010111000001111011001111101100011000010101111010001111001100101001001111100001011011011110101110011100111111010010100101100011101011100000100010011111011110101011010101111100100011011100000111111100110001111100111010111101011110010001011011001101010001001000110011100101000111100111011011110110100000101100010101011000100010001001101110111010000111010011101110111100111110011101101101010111011010011001111100101000011101101011100010100100111110010110011011001100101101111110111001100110110111111010100000010011110111011000101000111011110010110101101011111101111011000011101000110001110110110010101101011010001010101010010111100001011101010101000110011111001101001011
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{899
}{\log_{20}
899}-\frac{171}{\log_{20}171})=201.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5SXR_1
9JAK_1
252
154.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]