Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6XPR_1)}(2) \setminus P_{f(3NJY_1)}(2)|=71\),
\(|P_{f(3NJY_1)}(2) \setminus P_{f(6XPR_1)}(2)|=114\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:001001100001101000100110100001101111010001100001011100001000001001100101001110010101000010101100010001010000001100101100101001110101100001001011110011000001110101010101000000011110111010100110010101011011011110001011110101010010001100011110000001010101100011001001001101001000010110111101110
Pair
\(Z_2\)
Length of longest common subsequence
6XPR_1,3NJY_1
185
3
6XPR_1,4PII_1
181
3
3NJY_1,4PII_1
166
6
Newick tree
[
6XPR_1:94.17,
[
4PII_1:83,3NJY_1:83
]:11.17
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{672
}{\log_{20}
672}-\frac{291}{\log_{20}291})=105.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6XPR_1
3NJY_1
141
121.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]