Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5SFM_1)}(2) \setminus P_{f(4QFB_1)}(2)|=134\),
\(|P_{f(4QFB_1)}(2) \setminus P_{f(5SFM_1)}(2)|=57\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1001000001011101011101000101101011110011111110110000100010100100111010000001100010011011001011100000110010001111101000100011000010010011111000001000010001011010100110010000000110110011110011101100001001000101010000000011111101001001001111001010010101110100100111011111000000011010111001111100001001111001110100001001001101000101100101100111000
Pair
\(Z_2\)
Length of longest common subsequence
5SFM_1,4QFB_1
191
4
5SFM_1,1ERD_1
217
2
4QFB_1,1ERD_1
158
2
Newick tree
[
5SFM_1:10.84,
[
4QFB_1:79,1ERD_1:79
]:29.84
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{544
}{\log_{20}
544}-\frac{201}{\log_{20}201})=98.7\)
Status
Protein1
Protein2
d
d1/2
Query variables
5SFM_1
4QFB_1
129
100.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]