Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8JLO_1)}(2) \setminus P_{f(5GSC_1)}(2)|=102\),
\(|P_{f(5GSC_1)}(2) \setminus P_{f(8JLO_1)}(2)|=67\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1101100000000000010001000100010000010010001111111001000110010110101101011000101100000100100100100010011001111100111110110100010100110110110101110100010111000110100000000011001001100101100100110000110001100111000101001010110111000000011001001011111110000011100000000101110110011000110000111110000111001111000100011011000010010101100101001001100011010010101000001010001000010011000001100101000011
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{760
}{\log_{20}
760}-\frac{366}{\log_{20}366})=107.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8JLO_1
5GSC_1
138
131.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]