Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5SAC_1)}(2) \setminus P_{f(3QLD_1)}(2)|=86\),
\(|P_{f(3QLD_1)}(2) \setminus P_{f(5SAC_1)}(2)|=80\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1110100111011001010100101110110001000101101011000001110111011100010111010110011101110011100000111010011100100110010001011101110101010101100100111100101011010111001010110111011000100000101110011000100000100101000101011011100110000101011001101010000111101111110010001101001111000100011001001000010011011100110110000101100110101000010111100010100101010
Pair
\(Z_2\)
Length of longest common subsequence
5SAC_1,3QLD_1
166
4
5SAC_1,2FZU_1
167
3
3QLD_1,2FZU_1
183
4
Newick tree
[
2FZU_1:89.06,
[
5SAC_1:83,3QLD_1:83
]:6.06
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{737
}{\log_{20}
737}-\frac{349}{\log_{20}349})=105.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5SAC_1
3QLD_1
137
129.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]