Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2NTX_1)}(2) \setminus P_{f(9BUP_1)}(2)|=146\),
\(|P_{f(9BUP_1)}(2) \setminus P_{f(2NTX_1)}(2)|=30\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10000000101011000110111100101110110011110011001110111000010111000010100010111010001101110000000110001110000101110111100101111001001010001101000000100100000000111111011111100100011010000100100111110101100101100010011001010110010001000110100111110100000110100010101111000100000000110110100001100010011111000111110001010010100011011100000110011001100100110000111000111
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{498
}{\log_{20}
498}-\frac{133}{\log_{20}133})=107.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2NTX_1
9BUP_1
142
94
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]