Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5QHA_1)}(2) \setminus P_{f(1ZGV_1)}(2)|=74\),
\(|P_{f(1ZGV_1)}(2) \setminus P_{f(5QHA_1)}(2)|=122\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0110010101000011100001100000111111100101011101000010011101011110001001001101100100011101001011001110110000110111111000101010110100111111101101010000010011001100110000100110001011010111111111100010
Pair
\(Z_2\)
Length of longest common subsequence
5QHA_1,1ZGV_1
196
4
5QHA_1,8JXG_1
158
5
1ZGV_1,8JXG_1
176
3
Newick tree
[
1ZGV_1:97.39,
[
5QHA_1:79,8JXG_1:79
]:18.39
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{483
}{\log_{20}
483}-\frac{196}{\log_{20}196})=83.5\)
Status
Protein1
Protein2
d
d1/2
Query variables
5QHA_1
1ZGV_1
106
89.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]