Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5XGW_1)}(2) \setminus P_{f(4KED_1)}(2)|=143\),
\(|P_{f(4KED_1)}(2) \setminus P_{f(5XGW_1)}(2)|=32\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10000011111001010110111100111110011110001010101100111011010111101111000101011110111100111111001001110011111100000000001100101100011010010110011100101010001111011111101110000000101001101100001111101011110101101000101100110000111011010010000111000001100100101011111010111010011011100011100101000111011010101010010110100110011101001101001111100011011010001011111010111100000100111011100000001101010
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{538
}{\log_{20}
538}-\frac{143}{\log_{20}143})=115.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5XGW_1
4KED_1
147
97.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]