Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5PQX_1)}(2) \setminus P_{f(5IVW_1)}(2)|=16\),
\(|P_{f(5IVW_1)}(2) \setminus P_{f(5PQX_1)}(2)|=209\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100000000110110001010010011101010010011001100100001101110110100110010010011011010001010100010010001011100010001000110011101000111110010001001110010110110011
Pair
\(Z_2\)
Length of longest common subsequence
5PQX_1,5IVW_1
225
3
5PQX_1,9IYX_1
172
3
5IVW_1,9IYX_1
231
4
Newick tree
[
5IVW_1:12.92,
[
5PQX_1:86,9IYX_1:86
]:35.92
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{938
}{\log_{20}
938}-\frac{156}{\log_{20}156})=216.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5PQX_1
5IVW_1
278
164.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]