Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6ZMT_1)}(2) \setminus P_{f(7MEP_1)}(2)|=124\),
\(|P_{f(7MEP_1)}(2) \setminus P_{f(6ZMT_1)}(2)|=32\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1011101101000011011111001110010101000100000011011010001001111101111100110101100000100111011110110111101011010001011100101111001010001100100101101110000011001011110000110011111111100110101010000110111010100010010000011100110000101010111101010010110100110110111001100010101100010111010100111100010
Pair
\(Z_2\)
Length of longest common subsequence
6ZMT_1,7MEP_1
156
4
6ZMT_1,7NQD_1
188
4
7MEP_1,7NQD_1
154
3
Newick tree
[
6ZMT_1:89.27,
[
7MEP_1:77,7NQD_1:77
]:12.27
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{402
}{\log_{20}
402}-\frac{107}{\log_{20}107})=89.9\)
Status
Protein1
Protein2
d
d1/2
Query variables
6ZMT_1
7MEP_1
109
73
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]