Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5OXF_1)}(2) \setminus P_{f(8OZT_1)}(2)|=78\),
\(|P_{f(8OZT_1)}(2) \setminus P_{f(5OXF_1)}(2)|=86\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100110011000101101010100000100100111101000000001110010010001010101101001010110110011100001101101100100000110111000100100011100010010010101001010001000100010010010101110111011000110111000111100110010101100100001010110000100110000101010011001000101001100011100111001001001000101110010100010110001011001110011100011000010000111011010001000010111001100010011111001011000010011100000100011010001100101101010110010011100001000110010001100101100001110100001010100110000100011000001100000011101000001100100010001101001001100111111001000110010010001001010011011010000110011001010010010010001010001100010011011001100010011000011110101001001000100100010011100100101001100101011110110001000000000010010011001000010110010001001001001011110100100
Pair
\(Z_2\)
Length of longest common subsequence
5OXF_1,8OZT_1
164
4
5OXF_1,4XQJ_1
182
3
8OZT_1,4XQJ_1
208
3
Newick tree
[
4XQJ_1:10.42,
[
5OXF_1:82,8OZT_1:82
]:20.42
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1146
}{\log_{20}
1146}-\frac{414}{\log_{20}414})=191.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5OXF_1
8OZT_1
227
184.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]