5HJO_1|Chains A, C|Neutral alpha-glucosidase AB|Mus musculus (10090)
>7RGJ_1|Chains A, B|Dihydrofolate reductase type 1|Escherichia coli (562)
>5CYO_1|Chains A, B|Septin-9|Homo sapiens (9606)
Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5HJO_1)}(2) \setminus P_{f(7RGJ_1)}(2)|=200\),
\(|P_{f(7RGJ_1)}(2) \setminus P_{f(5HJO_1)}(2)|=22\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10000100000001000000101110100111001011101101011001001111101011000100101001010010001101111011010101010000010101101100111010110101100001110101011111000011001111000100000001011001110101111001011100100101010011010010010110001001111010111111001000111111011001101000010001011000111011111110110110001010100111111011000001000001011010011000011001111010010100010101001101101100110000011111010101001001000100011010000100001101110100101001010111001101000010110101100100101101101011001100111000010010110101101011100011100111100111010001111101000101001010111010111111010110111110010101110100111001110101010010001111100000110011100001111100110010001111101111001001001010001111011110110011101101011100011001000000011001011101001111001101110110100000010001101111101010101011100100100000001110010101001100010101010011110011111110111111000101000101000100011110011101100101010
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1014
}{\log_{20}
1014}-\frac{157}{\log_{20}157})=235.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5HJO_1
7RGJ_1
299
175.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]