Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5NDE_1)}(2) \setminus P_{f(4HNH_1)}(2)|=87\),
\(|P_{f(4HNH_1)}(2) \setminus P_{f(5NDE_1)}(2)|=87\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1100000101100101001000111100001000011110110101111001100110001101110010100111100010101011001000111001000100010100000001011010000010001100011110011010010110100011010111110010011101100011111011010011011010101110010010010101111101011110110001011001110101
Pair
\(Z_2\)
Length of longest common subsequence
5NDE_1,4HNH_1
174
4
5NDE_1,4TOQ_1
168
4
4HNH_1,4TOQ_1
158
3
Newick tree
[
5NDE_1:87.57,
[
4TOQ_1:79,4HNH_1:79
]:8.57
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{471
}{\log_{20}
471}-\frac{221}{\log_{20}221})=72.4\)
Status
Protein1
Protein2
d
d1/2
Query variables
5NDE_1
4HNH_1
91
87
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]