Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1ARH_1)}(2) \setminus P_{f(8FHI_1)}(2)|=40\),
\(|P_{f(8FHI_1)}(2) \setminus P_{f(1ARH_1)}(2)|=127\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110010111101111110110100011010111110000010011100100100011000000001110111011000001111010111000010010011101110111011100001001110010110000110011101000100010000101011100100101101111010000101101010010011010100111111011001110110001011011111000111100000011100001110011110000100110010111010000111011011101100011011100010010001001001110010001100010111000111010110000110100011101110111011110100111100111111
Pair
\(Z_2\)
Length of longest common subsequence
1ARH_1,8FHI_1
167
4
1ARH_1,8SWM_1
150
4
8FHI_1,8SWM_1
187
4
Newick tree
[
8FHI_1:92.74,
[
1ARH_1:75,8SWM_1:75
]:17.74
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1135
}{\log_{20}
1135}-\frac{396}{\log_{20}396})=193.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1ARH_1
8FHI_1
246
186.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]