Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5MUY_1)}(2) \setminus P_{f(4FCH_1)}(2)|=105\),
\(|P_{f(4FCH_1)}(2) \setminus P_{f(5MUY_1)}(2)|=56\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1101100100100111100110101101011101100011000101100101011100100111100000011000101000110001010100110101000100000010101010001101110001111011101010011110000100000100101101101011000110101111011011111100110011100000001010011001110101001011100010110011001010100001100110010010011010101000000011100001111001011100001010010000010010101100
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{549
}{\log_{20}
549}-\frac{221}{\log_{20}221})=93.8\)
Status
Protein1
Protein2
d
d1/2
Query variables
5MUY_1
4FCH_1
119
99
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]