Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3MOE_1)}(2) \setminus P_{f(8CUF_1)}(2)|=276\),
\(|P_{f(8CUF_1)}(2) \setminus P_{f(3MOE_1)}(2)|=2\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101110100110101011010100110010011010101001001010010000010111010001110010000001111001001101000011100000001111001000110110000100110101110101001011110111110111011101000101110101100110011011101011001001101111001110011001010111011000011011010110011100011101100110001111001111110010100001111110101000111101011110100110011110101010101101001111111100100010110010000110011000011101011001111110100100001010000101010001001100011101110010111101111110011111110011010011111111000101110001011100111101111001100110110110011101101101011000001011111110000110111101010001010111011000110101110101001111000110001001000100010101100100010110001001
Pair
\(Z_2\)
Length of longest common subsequence
3MOE_1,8CUF_1
278
2
3MOE_1,8AUE_1
164
5
8CUF_1,8AUE_1
224
3
Newick tree
[
8CUF_1:13.84,
[
3MOE_1:82,8AUE_1:82
]:55.84
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{632
}{\log_{20}
632}-\frac{8}{\log_{20}8})=191.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3MOE_1
8CUF_1
249
126
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]