Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5MIB_1)}(2) \setminus P_{f(4JLK_1)}(2)|=117\),
\(|P_{f(4JLK_1)}(2) \setminus P_{f(5MIB_1)}(2)|=69\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110100111111111110110111100101001010101100111111101111011100100101011001001011000010101110010011011111000111010010001011101101100001000000110111110010010101001000001101101000110001111110101011011100100001011011010010000101101000100110101001011010110000101001011110000111010011100110101001101101110011100011010010001100100111000101110111110110111001111011110101010110111101111101101100100111110110110001101111111111101101010011110010010100101110001011101001010100001111110001010101111111100110010101110110010110001001001000010110101110101000000110
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{826
}{\log_{20}
826}-\frac{280}{\log_{20}280})=149.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5MIB_1
4JLK_1
187
143
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]