Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4TWU_1)}(2) \setminus P_{f(2DNO_1)}(2)|=81\),
\(|P_{f(2DNO_1)}(2) \setminus P_{f(4TWU_1)}(2)|=47\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1110010100110111010101110100111011010100100100100100010101000100010111011111100010001010111000100001110010110011101100001101110101110011011000111000011101
Pair
\(Z_2\)
Length of longest common subsequence
4TWU_1,2DNO_1
128
3
4TWU_1,2DAU_1
114
2
2DNO_1,2DAU_1
80
2
Newick tree
[
4TWU_1:66.05,
[
2DAU_1:40,2DNO_1:40
]:26.05
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{256
}{\log_{20}
256}-\frac{102}{\log_{20}102})=49.1\)
Status
Protein1
Protein2
d
d1/2
Query variables
4TWU_1
2DNO_1
62
49
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]