Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5KVU_1)}(2) \setminus P_{f(2PWV_1)}(2)|=114\),
\(|P_{f(2PWV_1)}(2) \setminus P_{f(5KVU_1)}(2)|=38\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1010010110010001111100111111011101111010100101110111011001000001100110110100110001101101010110111110010001011100110100000011000010011011011100100000110110001000100110101100001101001010110001010010010101110010011101011100101100111000110010000100110011110101010110100111110110110001110000110011101001100100010011100000110010000000101111001011001001001110101111101110101101010000110100010010001101000010101001101101111100100010000010110011101101101011100010110110101100111001101110010101111111101001000011001000100000011010110010010000001101100111010110001001111101100101101111111111000111101100100110000101001101111111100111001000101110010111101100000100001010001001011101100111000000110011011011000001110010010101101110011000100111010001011101101
Pair
\(Z_2\)
Length of longest common subsequence
5KVU_1,2PWV_1
152
4
5KVU_1,7HVI_1
221
4
2PWV_1,7HVI_1
185
4
Newick tree
[
7HVI_1:10.17,
[
5KVU_1:76,2PWV_1:76
]:33.17
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1131
}{\log_{20}
1131}-\frac{386}{\log_{20}386})=195.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5KVU_1
2PWV_1
247
186
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]