Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6AVO_1)}(2) \setminus P_{f(3VNI_1)}(2)|=61\),
\(|P_{f(3VNI_1)}(2) \setminus P_{f(6AVO_1)}(2)|=95\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110010010100101010110100111111111101110110111110000000110000010010110001111001111000111001001100001100011101011001101100000011101111011101100101011000101101110101110001010011000000010100110011101000101010000101110001110010100100011111
Pair
\(Z_2\)
Length of longest common subsequence
6AVO_1,3VNI_1
156
4
6AVO_1,2ZOL_1
170
4
3VNI_1,2ZOL_1
172
4
Newick tree
[
2ZOL_1:87.85,
[
6AVO_1:78,3VNI_1:78
]:9.85
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{528
}{\log_{20}
528}-\frac{234}{\log_{20}234})=84.1\)
Status
Protein1
Protein2
d
d1/2
Query variables
6AVO_1
3VNI_1
110
97.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]