Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5JOW_1)}(2) \setminus P_{f(6LVL_1)}(2)|=119\),
\(|P_{f(6LVL_1)}(2) \setminus P_{f(5JOW_1)}(2)|=52\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110000000001000111111010101001100001100010011111110000110100110010010010100100101111101000011101100010101011100001000100111100111010101001001110010101010010110100100000110101100101101000011001110011001100101100001011001011011100100010001101010101101001011110110011110000110000111101000111110001010101011011000101010010100101010110100101000110001010111011010010010111100001010101111100111000111011101000001110000000001110001101000100101100101011100010000110010110001101000010000111101111110100100000101010010001011000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{829
}{\log_{20}
829}-\frac{313}{\log_{20}313})=140.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5JOW_1
6LVL_1
178
141
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]