Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8RVL_1)}(2) \setminus P_{f(9JUL_1)}(2)|=13\),
\(|P_{f(9JUL_1)}(2) \setminus P_{f(8RVL_1)}(2)|=175\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10001101101100001100001101110111000011101001101000011111100110010110101100111110001111010100100100110011000100011101001101001100110110000001011101111111000100110010111100001011011110110111001100000110001011001110110110000100000101111000011010001010010101100101010001
Pair
\(Z_2\)
Length of longest common subsequence
8RVL_1,9JUL_1
188
4
8RVL_1,2CLK_1
158
4
9JUL_1,2CLK_1
198
4
Newick tree
[
9JUL_1:10.70,
[
8RVL_1:79,2CLK_1:79
]:22.70
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1593
}{\log_{20}
1593}-\frac{266}{\log_{20}266})=343.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8RVL_1
9JUL_1
419
252
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]