Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5ISD_1)}(2) \setminus P_{f(7EXT_1)}(2)|=105\),
\(|P_{f(7EXT_1)}(2) \setminus P_{f(5ISD_1)}(2)|=63\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1011001000110000000011001010101000001100010010000111000001000111011010111011110111001011010011001011100001000111111010010110010111001110111000110001010001010101110110101111000010100100101100101011010110111100010011100101011110010001011010010100101110101100111011111101111101101110011001100100100110011110110010100111100000001011101000100000110100111000100101111
Pair
\(Z_2\)
Length of longest common subsequence
5ISD_1,7EXT_1
168
4
5ISD_1,1BOT_1
164
4
7EXT_1,1BOT_1
172
4
Newick tree
[
7EXT_1:85.98,
[
5ISD_1:82,1BOT_1:82
]:3.98
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{609
}{\log_{20}
609}-\frac{248}{\log_{20}248})=101.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5ISD_1
7EXT_1
130
108.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]