Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1LJH_1)}(2) \setminus P_{f(6LZM_1)}(2)|=60\),
\(|P_{f(6LZM_1)}(2) \setminus P_{f(1LJH_1)}(2)|=77\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:011100011111000110000100110110110100010001000000100001110100011000100110001001100111000101010010011001011011111000001001011101001
Pair
\(Z_2\)
Length of longest common subsequence
1LJH_1,6LZM_1
137
3
1LJH_1,5NJS_1
0
129
6LZM_1,5NJS_1
137
3
Newick tree
[
6LZM_1:79.09,
[
1LJH_1:0,5NJS_1:0
]:79.09
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{293
}{\log_{20}
293}-\frac{129}{\log_{20}129})=51.0\)
Status
Protein1
Protein2
d
d1/2
Query variables
1LJH_1
6LZM_1
63
56
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]