Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5FRP_1)}(2) \setminus P_{f(3QBK_1)}(2)|=145\),
\(|P_{f(3QBK_1)}(2) \setminus P_{f(5FRP_1)}(2)|=42\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1111011100101001110000011000011001011000110100000010110000011100011000011101101001001101011011000101001101110010011000010010000110011000011111011000011101101100100011101101111111011001001110110111001100010011011010000100101110000000100010000001100100000000110111010011101100110110111111000100000110001001110110000010110000001011100110101010101000110111000010001001110011000101000011110011100110010001100011011000000100101001101000010010000000011011001100100100100101000100111001111010000010011011001000110011110100101011100010100110000010000111110000001011101100000110110010010000110110101000111101000000110010011110000100110111001101101111010111001001011101000001001010001100100101011000100100110010010
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{994
}{\log_{20}
994}-\frac{291}{\log_{20}291})=188.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5FRP_1
3QBK_1
235
163.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]