Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3ZUJ_1)}(2) \setminus P_{f(4AIL_1)}(2)|=158\),
\(|P_{f(4AIL_1)}(2) \setminus P_{f(3ZUJ_1)}(2)|=8\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:011010101010101110101111011111011010001010100111111100110111001001110010011001000110100100011000111001000101010001001010110111011110000101010000101001110001001101011100000100000100110110000100010100000000010100010100
Pair
\(Z_2\)
Length of longest common subsequence
3ZUJ_1,4AIL_1
166
3
3ZUJ_1,2XWH_1
196
4
4AIL_1,2XWH_1
248
3
Newick tree
[
2XWH_1:11.82,
[
3ZUJ_1:83,4AIL_1:83
]:36.82
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{227
}{\log_{20}
227}-\frac{11}{\log_{20}11})=75.8\)
Status
Protein1
Protein2
d
d1/2
Query variables
3ZUJ_1
4AIL_1
100
52.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]