Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5FQE_1)}(2) \setminus P_{f(4TND_1)}(2)|=83\),
\(|P_{f(4TND_1)}(2) \setminus P_{f(5FQE_1)}(2)|=77\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1100000000001111010011010000011101100010010000001001010010011111001000111100001100101000011000101100001010110001101100010111011101100010101000011011101011001011100101010100100000100010110110111000000101100100110000100001100001001010100000111011110110011000000001011010000010101000010011010101111010011101000011110001001001000001101011001110110011001100100011101001010000100101010110010000000101001100001000011001001011100100000010011000001111001000010010010100100111011001000001110101011100110010000101101111011000011001000101001001100100100110011010001001100100100100101011110000001010010010011001100110101001
Pair
\(Z_2\)
Length of longest common subsequence
5FQE_1,4TND_1
160
4
5FQE_1,9NSZ_1
172
4
4TND_1,9NSZ_1
182
4
Newick tree
[
9NSZ_1:91.20,
[
5FQE_1:80,4TND_1:80
]:11.20
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1200
}{\log_{20}
1200}-\frac{590}{\log_{20}590})=156.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5FQE_1
4TND_1
201
195.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]